Newtonian boreal forest ecology: The Scots pine ecosystem as an example

نویسندگان

  • Pertti Hari
  • Tuomas Aakala
  • Juho Aalto
  • Jaana Bäck
  • Jaakko Hollmén
  • Kalev Jõgiste
  • Kourosh Kabiri Koupaei
  • Mika A. Kähkönen
  • Mikko Korpela
  • Liisa Kulmala
  • Eero Nikinmaa
  • Jukka Pumpanen
  • Mirja Salkinoja-Salonen
  • Pauliina Schiestl-Aalto
  • Asko Simojoki
  • Mikko Havimo
چکیده

Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Needle Loss of Individual Scots Pine Trees by Means of Airborne Laser Scanning

Forest disturbances caused by pest insects are threatening ecosystem stability, sustainable forest management and economic return in boreal forests. Climate change and increased extreme weather patterns can magnify the intensity of forest disturbances, particularly at higher latitudes. Due to rapid responses to elevating temperatures, forest insect pests can flexibly change their survival, disp...

متن کامل

Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest

Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time ...

متن کامل

Nitrogen balance of a boreal Scots pine forest

Nitrogen balance of a boreal Scots pine forest J. F. J. Korhonen, M. Pihlatie, J. Pumpanen, H. Aaltonen, P. Hari, J. Levula, A.-J. Kieloaho, E. Nikinmaa, T. Vesala, and H. Ilvesniemi Department of Physics, P.O. Box 48, 00 014, University of Helsinki, Finland Department of Forest Sciences, P.O. Box 27, 00 014, University of Helsinki, Finland Hyytiälä Forestry Field station, Hyytiäläntie 124, 35 ...

متن کامل

Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management.

This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and souther...

متن کامل

C2-C10 hydrocarbon emissions from a boreal wetland and forest floor

Emissions of various C2-C10 hydrocarbons (VOCs) and halogenated hydrocarbons (VHOCs) from a boreal wetland and a Scots pine forest floor in south-western Finland were measured by the static chamber technique. Isoprene was the main non-methane hydrocarbon emitted by the wetland, but small emissions of ethene, propane, propene, 1-butene, 2-methylpropene, butane, pentane and hexane were also detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017